- Level Foundation
- المدة 21 ساعات hours
- الطبع بواسطة University of Illinois Urbana-Champaign
- Offered by
عن
Accounting has always been about analytical thinking. From the earliest days of the profession, Luca Pacioli emphasized the importance of math and order for analyzing business transactions. The skillset that accountants have needed to perform math and to keep order has evolved from pencil and paper, to typewriters and calculators, then to spreadsheets and accounting software. A new skillset that is becoming more important for nearly every aspect of business is that of big data analytics: analyzing large amounts of data to find actionable insights. This course is designed to help accounting students develop an analytical mindset and prepare them to use data analytic programming languages like Python and R. We've divided the course into three main sections. In the first section, we bridge accountancy to analytics. We identify how tasks in the five major subdomains of accounting (i.e., financial, managerial, audit, tax, and systems) have historically required an analytical mindset, and we then explore how those tasks can be completed more effectively and efficiently by using big data analytics. We then present a FACT framework for guiding big data analytics: Frame a question, Assemble data, Calculate the data, and Tell others about the results. In the second section of the course, we emphasize the importance of assembling data. Using financial statement data, we explain desirable characteristics of both data and datasets that will lead to effective calculations and visualizations. In the third, and largest section of the course, we demonstrate and explore how Excel and Tableau can be used to analyze big data. We describe visual perception principles and then apply those principles to create effective visualizations. We then examine fundamental data analytic tools, such as regression, linear programming (using Excel Solver), and clustering in the context of point of sale data and loan data. We conclude by demonstrating the power of data analytic programming languages to assemble, visualize, and analyze data. We introduce Visual Basic for Applications as an example of a programming language, and the Visual Basic Editor as an example of an integrated development environment (IDE).الوحدات
About the Course
- 2 Videos
- 5 Readings
- 1 Plugin
2 Videos
- Course Introduction
- About Ronald Guymon
5 Readings
- Syllabus
- Glossary
- About the Discussion Forums
- ePub
- Online Education at Gies College of Business
About Your Classmates
- 1 Readings
- 1 Discussion
1 Discussions
- Get to Know Your Fellow Learners
1 Readings
- Update Your Profile
Module 1 Information
- 1 Videos
- 2 Readings
- 1 Discussion
1 Discussions
- Make Connections to Topic
1 Videos
- Module 1 Introduction
2 Readings
- Module 1 Overview
- Module 1 Readings
Lesson 1.1
- 5 Videos
- 1 Quiz
5 Videos
- 1.1.1 History and Future of Accounting
- 1.1.2 The Importance of Data and Analytics in Accounting
- 1.1.3 Humans' Relationship with Data
- 1.1.4 Accountants' Role in Shaping How Data Is Used
- 1.1.5 Data Analytics Tools: Spreadsheets vs. Data Science Languages
1 Quiz
- Lesson 1.1 Knowledge Check
Lesson 1.2
- 5 Videos
- 1 Quiz
5 Videos
- 1.2.1 Advanced Data Analytics in Managerial Accounting Overview
- 1.2.2 Advanced Data Analytics in Auditing Overview
- 1.2.3 Advanced Data Analytics in Financial Accounting Overview
- 1.2.4 Advanced Data Analytics in Taxes Overview
- 1.2.5 Advanced Data Analytics in Systems Accounting Overview
1 Quiz
- Lesson 1.2 Knowledge Check
Module 1 Conclusion
- 1 Videos
- 1 Quiz
1 Videos
- Module 1 Conclusion
1 Quiz
- Introduction to Accountancy Analytics: Quiz
Module 2 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 2 Introduction
2 Readings
- Module 2 Overview
- Module 2 Readings
Lesson 2.1
- 2 Videos
- 1 Quiz
2 Videos
- 2.1.1 Making Room for Empirical Enquiry
- 2.1.2 System 1 vs. System 2 Mindset
1 Quiz
- Lesson 2.1 Knowledge Check
Lesson 2.2
- 3 Videos
- 1 Quiz
3 Videos
- 2.2.1 Linking Core Courses to Analytical Thinking
- 2.2.2 Inductive and Deductive Reasoning
- 2.2.3 Advanced Analytics and the Art of Persuasion
1 Quiz
- Lesson 2.2 Knowledge Check
Lesson 2.3
- 5 Videos
- 1 Quiz
5 Videos
- 2.3.1 FACT Framework: Frame the Question
- 2.3.2 FACT Framework: Assemble the Data
- 2.3.3 FACT Framework: Calculate Results
- 2.3.4 FACT Framework: Tell Others About the Results
- 2.3.5 FACT Framework Review
1 Quiz
- Lesson 2.3 Knowledge Check
Module 2 Conclusion
- 1 Videos
- 1 Quiz
1 Videos
- Module 2 Conclusion
1 Quiz
- Accounting Analysis and an Analytics Mindset: Quiz
Module 3 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 3 Introduction: What is Data?
2 Readings
- Module 3 Overview
- Module 3 Readings
Lesson 3.1
- 1 Videos
1 Videos
- 3.1.1 Characteristics that Make Data Useful for Decision Making
Lesson 3.2
- 4 Videos
- 1 Quiz
4 Videos
- 3.2.1 Structured vs. Unstructured Data
- 3.2.2 Properties of a Tidy Dataframe
- 3.2.3 Data Types
- 3.2.4 Data Dictionaries
1 Quiz
- Lesson 3.2 Knowledge Check
Lesson 3.3
- 3 Videos
3 Videos
- 3.3.1 Wide Data vs. Long Data
- 3.3.2 Merging Data
- 3.3.3 Data Automation
Lesson 3.4
- 2 Videos
- 1 Quiz
2 Videos
- 3.4.1 Visualization Distributions
- 3.4.2 Visualizing Data Relationships
1 Quiz
- Lesson 3.4 Knowledge Check
Module 3 Conclusion
- 1 Videos
- 1 Quiz
1 Videos
- Module 3 Conclusion
1 Quiz
- Data and Its Properties: Quiz
Module 4 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 4 Introduction
2 Readings
- Module 4 Overview
- Module 4 Readings
Lesson 4.1
- 3 Videos
- 1 Quiz
3 Videos
- 4.1.1 Why Visualize Data?
- 4.1.2 Visual Perception Principles
- 4.1.3 Data Visualization Building Blocks
1 Quiz
- Lesson 4.1 Knowledge Check
Lesson 4.2
- 6 Videos
- 1 Quiz
6 Videos
- 4.2.1 Basic Chart Data
- 4.2.2 Scatter Plots
- 4.2.3 Bar Charts
- 4.2.4 Box and Whisker Plots
- 4.2.5 Line Charts
- 4.2.6 Maps
1 Quiz
- Lesson 4.2 Knowledge Check
Lesson 4.3
- 6 Videos
- 1 Quiz
6 Videos
- 4.3.1 Financial Chart Data
- 4.3.2 Waterfall Charts
- 4.3.3 Candlestick Charts
- 4.3.4 Treemaps and Sunburst Charts
- 4.3.5 Sparklines and Facets
- 4.3.6 Charts to Use Sparingly
1 Quiz
- Lesson 4.3 Knowledge Check
Module 4 Conclusion
- 1 Videos
- 1 Quiz
- 1 PeerReview
1 Peer Review
- Data Visualization 1: Peer Review Assignment
1 Videos
- Module 4 Conclusion
1 Quiz
- Data Visualization 1: Quiz
Module 5 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 5 Introduction
2 Readings
- Module 5 Overview
- Module 5 Readings
Lesson 5.1
- 5 Videos
5 Videos
- 5.1.1 Getting Started with Tableau
- 5.1.2 Scatter Plots in Tableau - 1
- 5.1.3 Scatter Plots in Tableau - 2
- 5.1.4 Bar Charts and Histograms in Tableau
- 5.1.5 Box Plots and Line Charts in Tableau
Lesson 5.2
- 2 Videos
- 1 Quiz
2 Videos
- 5.2.1 Adding Dimensions in Tableau
- 5.2.2 Facets and Groups in Tableau
1 Quiz
- Lesson 5.2 Knowledge Check
Lesson 5.3
- 3 Videos
3 Videos
- 5.3.1 Data Joins in Tableau
- 5.3.2 Tableau Analytics - Forecasts
- 5.3.3 Tableau Analytics - Clusters and Confidence Intervals
Lesson 5.4
- 1 Videos
- 1 Quiz
1 Videos
- 5.4.1 Communicating Tableau Analyses
1 Quiz
- Lesson 5.4 Knowledge Check
Module 5 Conclusion
- 1 Videos
- 1 Quiz
1 Videos
- Module 5 Conclusion
1 Quiz
- Data Visualization 2: Quiz
Module 6 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 6 Introduction
2 Readings
- Module 6 Overview
- Module 6 Readings
Lesson 6.1
- 4 Videos
- 1 Quiz
4 Videos
- 6.1.1 Framing a Question: Larry's Commissary
- 6.1.2 Assembling Data
- 6.1.3 Data Analysis ToolPak and Descriptive Statistics
- 6.1.4 Correlation
1 Quiz
- Lesson 6.1 Knowledge Check
Lesson 6.2
- 3 Videos
- 1 Quiz
3 Videos
- 6.2.1 Linear Models
- 6.2.2 Simple Regression
- 6.2.3 Regression Diagnostics 1: Regression Summary, ANOVA, and Coefficient Estimates
1 Quiz
- Lesson 6.2 Knowledge Check
Lesson 6.3
- 3 Videos
3 Videos
- 6.3.1 Multiple Regression
- 6.3.2 Regression Diagnostics 2: Predicted Values, Residuals, and Standardized Residuals
- 6.3.3 Regression Diagnostics 3: Line Fit Plots, Adjusted R Square, and Heat Maps for P-Values
Lesson 6.4
- 1 Videos
- 1 Quiz
1 Videos
- 6.4.1 Making a Forecast with a Linear Model
1 Quiz
- Lesson 6.4 Knowledge Check
Module 6 Conclusion
- 1 Videos
- 1 Quiz
- 1 PeerReview
1 Peer Review
- Analytic Tools in Excel 1: Peer Review Assignment
1 Videos
- Module 6 Conclusion
1 Quiz
- Analytic Tools in Excel 1: Quiz
Module 7 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 7 Introduction
2 Readings
- Module 7 Overview
- Module 7 Readings
Lesson 7.1
- 5 Videos
- 1 Quiz
5 Videos
- 7.1.1 Polynomial Regression Models
- 7.1.2 Categorical Variables
- 7.1.3 Multiple Indicator Variables
- 7.1.4 Interaction Terms
- 7.1.5 Regression Summary
1 Quiz
- Lesson 7.1 Knowledge Check
Lesson 7.2
- 2 Videos
2 Videos
- 7.2.1 Optimization with Excel Solver
- 7.2.2 Solver Constraints and Reports
Lesson 7.3
- 3 Videos
- 1 Quiz
3 Videos
- 7.3.1 Logit Transformation
- 7.3.2 Simple Logistic Regression
- 7.3.3 Logistic Regression Accuracy
1 Quiz
- Lesson 7.3 Knowledge Check
Module 7 Conclusion
- 1 Videos
- 1 Quiz
1 Videos
- Module 7 Conclusion
1 Quiz
- Analytic Tools in Excel 2: Quiz
Module 8 Information
- 1 Videos
- 2 Readings
1 Videos
- Module 8 Introduction
2 Readings
- Module 8 Overview
- Module 8 Readings
Lesson 8.1
- 3 Videos
- 1 Quiz
3 Videos
- 8.1.1 Recording Macros
- 8.1.2 Basics of VB Editor
- 8.1.3 Basics of VBA
1 Quiz
- Lesson 8.1 Knowledge Check
Lesson 8.2
- 3 Videos
- 1 Quiz
3 Videos
- 8.2.1 For Loops, Variables, Index Numbers, and Last Rows
- 8.2.2 Programming Hints
- 8.2.3 Conditional Statements
1 Quiz
- Lesson 8.2 Knowledge Check
Lesson 8.3
- 5 Videos
- 1 Quiz
5 Videos
- 8.3.1 Macro for Creating Multiple Histograms
- 8.3.2 Clustering Overview
- 8.3.3 K-Means Clustering in Excel
- 8.3.4 K-Means Clustering Macro
- 8.3.5 Clustering On a Larger Scale
1 Quiz
- Lesson 8.3 Knowledge Check
Module 8 Conclusion
- 2 Videos
- 2 Readings
- 1 Quiz
- 1 Plugin
2 Videos
- Module 8 Conclusion
- Learn on Your Terms
2 Readings
- Congratulations on completing the course!
- Get Your Course Certificate
1 Quiz
- Automation in Excel: Quiz
Ronald Guymon