دوراتنا

Probability Theory

Probability Theory

This course provides an introduction to probability theory. You will encounter discrete and continuous random variables and learn in which situations they appear, what their properties are and how they interact.

  • مقدم بواسطة
  • التعلم الذاتي
  • 23
  • language الإنجليزية
الاشتراك الشهري
متضمن في
  • الباقة الاحترافية @ AED 149 + VAT
  • الباقة الإبتدائية @ AED 99 + VAT
اعرف المزيد
I/O-efficient algorithms

I/O-efficient algorithms

I/O-efficient algorithms, also known as external memory algorithms or cache-oblivious algorithms, are a class of algorithms designed to efficiently process data that is too large to fit entirely in the main memory (RAM) of a computer. These algorithms are particularly useful when dealing with massive datasets, such as those found in large-scale data processing, database management, and file systems. Operations on data become more expensive when the data item is located higher in the memory hierarchy.

  • مقدم بواسطة
  • التعلم الذاتي
  • 10 ساعات
  • language الإنجليزية
الاشتراك الشهري
متضمن في
  • الباقة الإبتدائية @ AED 99 + VAT
  • الباقة الاحترافية @ AED 149 + VAT
اعرف المزيد
Geometric Algorithms

Geometric Algorithms

Geometric algorithms are a category of computational methods used to solve problems related to geometric shapes and their properties. These algorithms deal with objects like points, lines, polygons, and other geometric figures. In many areas of computer science such as robotics, computer graphics, virtual reality, and geographic information systems, it is necessary to store, analyze, and create or manipulate spatial data.

  • مقدم بواسطة
  • التعلم الذاتي
  • 18 ساعات
  • language الإنجليزية
الاشتراك الشهري
متضمن في
  • الباقة الإبتدائية @ AED 99 + VAT
  • الباقة الاحترافية @ AED 149 + VAT
اعرف المزيد
Probability & Statistics for Machine Learning & Data Science

Probability & Statistics for Machine Learning & Data Science

Newly updated for 2024! Mathematics for Machine Learning and Data Science is a foundational online program created by DeepLearning.AI and taught by Luis Serrano. In machine learning, you apply math concepts through programming. And so, in this specialization, you’ll apply the math concepts you learn using Python programming in hands-on lab exercises.

  • مقدم بواسطة
  • التعلم الذاتي
  • 29 ساعات
  • language الإنجليزية
الاشتراك الشهري
متضمن في
  • الباقة الإبتدائية @ AED 99 + VAT
  • الباقة الاحترافية @ AED 149 + VAT
اعرف المزيد
Approximation Algorithms

Approximation Algorithms

Many real-world algorithmic problems cannot be solved efficiently using traditional algorithmic tools, for example, because the problems are NP-hard. The goal of the Approximation Algorithms course is to become familiar with important algorithmic concepts and techniques needed to effectively deal with such problems. These techniques apply when we don't require the optimal solution to certain problems, but an approximation that is close to the optimal solution. We will see how to efficiently find such approximations.

  • مقدم بواسطة
  • التعلم الذاتي
  • 15 ساعات
  • language الإنجليزية
الاشتراك الشهري
متضمن في
  • الباقة الإبتدائية @ AED 99 + VAT
  • الباقة الاحترافية @ AED 149 + VAT
اعرف المزيد
Probability Theory: Foundation for Data Science

Probability Theory: Foundation for Data Science

Understand the foundations of probability and its relationship to statistics and data science.  We’ll learn what it means to calculate a probability, independent and dependent outcomes, and conditional events.  We’ll study discrete and continuous random variables and see how this fits with data collection.  We’ll end the course with Gaussian (normal) random variables and the Central Limit Theorem and understand its fundamental importance for all of statistics and data science. This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science

  • مقدم بواسطة
  • التعلم الذاتي
  • 48 ساعات
  • language الإنجليزية
الاشتراك الشهري
متضمن في
  • الباقة الإبتدائية @ AED 99 + VAT
  • الباقة الاحترافية @ AED 149 + VAT
اعرف المزيد
Probabilistic Deep Learning with TensorFlow 2

Probabilistic Deep Learning with TensorFlow 2

Welcome to this course on Probabilistic Deep Learning with TensorFlow! This course builds on the foundational concepts and skills for TensorFlow taught in the first two courses in this specialisation, and focuses on the probabilistic approach to deep learning. This is an increasingly important area of deep learning that aims to quantify the noise and uncertainty that is often present in real world datasets.

  • مقدم بواسطة
  • التعلم الذاتي
  • 53 ساعات
  • language الإنجليزية
AED 170.99 + VAT
اعرف المزيد
Basic Data Descriptors, Statistical Distributions, and Application to Business Decisions

Basic Data Descriptors, Statistical Distributions, and Application to Business Decisions

The ability to understand and apply Business Statistics is becoming increasingly important in the industry. A good understanding of Business Statistics is a requirement to make correct and relevant interpretations of data. Lack of knowledge could lead to erroneous decisions which could potentially have negative consequences for a firm. This course is designed to introduce you to Business Statistics. We begin with the notion of descriptive statistics, which is summarizing data using a few numbers.

  • مقدم بواسطة
  • التعلم الذاتي
  • 21 ساعات
  • language الإنجليزية
AED 274.99 + VAT
اعرف المزيد