

دوراتنا

NoSQL, Big Data, and Spark Foundations
Big Data Engineers and professionals with NoSQL skills are highly sought after in the data management industry. This Specialization is designed for those seeking to develop fundamental skills for working with Big Data, Apache Spark, and NoSQL databases.
-
Course by
-
Self Paced
-
الإنجليزية

Big Data
Drive better business decisions with an overview of how big data is organized, analyzed, and interpreted. Apply your insights to real-world problems and questions. ********* Do you need to understand big data and how it will impact your business? This Specialization is for you. You will gain an understanding of what insights big data can provide through hands-on experience with the tools and systems used by big data scientists and engineers. Previous programming experience is not required! You will be guided through the basics of using Hadoop with MapReduce, Spark, Pig and Hive.
-
Course by
-
Self Paced
-
الإنجليزية

Big Data Analysis with Scala and Spark (Scala 2 version)
Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout.
-
Course by
-
Self Paced
-
28 ساعات
-
الإنجليزية

Data Manipulation at Scale: Systems and Algorithms
Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively.
-
Course by
-
Self Paced
-
20 ساعات
-
الإنجليزية

Communicating Data Science Results
Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment.
-
Course by
-
Self Paced
-
8 ساعات
-
الإنجليزية

مقدمة عن البيانات الضخمة
مقدمة عن البيانات الضخمة هل أنت مهتم بزيادة معرفتك بأبرز سمات البيانات الضخمة؟ هذه الدورة التدريبية مخصصة للمستجدين في علوم البيانات والمهتمين بفهم أسباب ظهور عصر البيانات الضخمة. فهي مخصصة لمن يريدون الإلمام بالمصطلحات والمفاهيم الأساسية الخاصة بمشكلات البيانات الضخمة وتطبيقاتها وأنظمتها. إنها لمن يريدون البدء في التفكير بشأن الطريقة التي يمكن أن تفيدهم البيانات الضخمة بها في عملهم أو مسيرتهم المهنية.
-
Course by
-
Self Paced
-
11 ساعات
-
عربي

Introduction to Big Data with Spark and Hadoop
This self-paced IBM course will teach you all about big data! You will become familiar with the characteristics of big data and its application in big data analytics. You will also gain hands-on experience with big data processing tools like Apache Hadoop and Apache Spark. Bernard Marr defines big data as the digital trace that we are generating in this digital era. You will start the course by understanding what big data is and exploring how insights from big data can be harnessed for a variety of use cases.
-
Course by
-
Self Paced
-
24 ساعات
-
الإنجليزية

Introduction to Big Data
Interested in increasing your knowledge of the Big Data landscape? This course is for those new to data science and interested in understanding why the Big Data Era has come to be. It is for those who want to become conversant with the terminology and the core concepts behind big data problems, applications, and systems. It is for those who want to start thinking about how Big Data might be useful in their business or career.
-
Course by
-
Self Paced
-
17 ساعات
-
الإنجليزية

Cloud Computing Concepts: Part 2
Cloud computing systems today, whether open-source or used inside companies, are built using a common set of core techniques, algorithms, and design philosophies – all centered around distributed systems. Learn about such fundamental distributed computing "concepts" for cloud computing. Some of these concepts include: clouds, MapReduce, key-value/NoSQL stores, classical distributed algorithms, widely-used distributed algorithms, scalability, trending areas, and much, much more! Know how these systems work from the inside out.
-
Course by
-
Self Paced
-
20 ساعات
-
الإنجليزية

Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud
Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this second course we continue Cloud Computing Applications by exploring how the Cloud opens up data analytics of huge volumes of data that are static or streamed at high velocity and represent an enormous variety of information. Cloud applications and data analytics represent a disruptive change in the ways that society is informed by, and uses information.
-
Course by
-
Self Paced
-
20 ساعات
-
الإنجليزية

Machine Learning: Clustering & Retrieval
Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval.
-
Course by
-
Self Paced
-
17 ساعات
-
الإنجليزية

Cloud Computing Concepts, Part 1
Cloud computing systems today, whether open-source or used inside companies, are built using a common set of core techniques, algorithms, and design philosophies – all centered around distributed systems. Learn about such fundamental distributed computing "concepts" for cloud computing. Some of these concepts include: clouds, MapReduce, key-value/NoSQL stores, classical distributed algorithms, widely-used distributed algorithms, scalability, trending areas, and much, much more! Know how these systems work from the inside out.
-
Course by
-
Self Paced
-
23 ساعات
-
الإنجليزية

Big Data Analysis with Scala and Spark
Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout.
-
Course by
-
Self Paced
-
28 ساعات
-
الإنجليزية