

Our Courses

Vital Skills for Data Science
Vital Skills for Data Science introduces students to several areas that every data scientist should be familiar with. Each of the topics is a field in itself. This specialization provides a "taste" of each of these areas which will allow the student to determine if any of these areas is something they want to explore further. In this specialization, students will learn about different applications of data science and how to apply the steps in a data science process to real life data.
-
Course by
-
Self Paced
-
English

Advanced Topics and Future Trends in Database Technologies
This course consists of four modules covering some of the more in-depth and advanced areas of database technologies, followed by a look at the future of database software and where the industry is heading. Advanced Topics and Future Trends in Database Technologies can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others.
-
Course by
-
Self Paced
-
17 hours
-
English

Cybersecurity for Data Science
This course aims to help anyone interested in data science understand the cybersecurity risks and the tools/techniques that can be used to mitigate those risks. We will cover the distinctions between confidentiality, integrity, and availability, introduce learners to relevant cybersecurity tools and techniques including cryptographic tools, software resources, and policies that will be essential to data science.
-
Course by
-
Self Paced
-
19 hours
-
English

Resampling, Selection and Splines
"Statistical Learning for Data Science" is an advanced course designed to equip working professionals with the knowledge and skills necessary to excel in the field of data science. Through comprehensive instruction on key topics such as shrink methods, parametric regression analysis, generalized linear models, and general additive models, students will learn how to apply resampling methods to gain additional information about fitted models, optimize fitting procedures to improve prediction accuracy and interpretability, and identify the benefits and approach of non-linear models.
-
Course by
-
Self Paced
-
16 hours
-
English

Successful Presentation
Few kinds of communication can have the effect of a powerful presentation. Even a short speech can motivate people to change long-held beliefs or to take action, and a wonderfully delivered speech can transform a normal person into a leader. In this course, Prof. William Kuskin provides a series of pragmatic videos and exercises for successful public speaking and presentations.
-
Course by
-
Self Paced
-
21 hours
-
English

ANOVA and Experimental Design
This second course in statistical modeling will introduce students to the study of the analysis of variance (ANOVA), analysis of covariance (ANCOVA), and experimental design. ANOVA and ANCOVA, presented as a type of linear regression model, will provide the mathematical basis for designing experiments for data science applications. Emphasis will be placed on important design-related concepts, such as randomization, blocking, factorial design, and causality.
-
Course by
-
Self Paced
-
40 hours
-
English

Trees, SVM and Unsupervised Learning
"Trees, SVM and Unsupervised Learning" is designed to provide working professionals with a solid foundation in support vector machines, neural networks, decision trees, and XG boost. Through in-depth instruction and practical hands-on experience, you will learn how to build powerful predictive models using these techniques and understand the advantages and disadvantages of each. The course will also cover how and when to apply them to different scenarios, including binary classification and K > 2 classes.
-
Course by
-
Self Paced
-
13 hours
-
English

Managing, Describing, and Analyzing Data
In this course, you will learn the basics of understanding the data you have and why correctly classifying data is the first step to making correct decisions. You will describe data both graphically and numerically using descriptive statistics and R software. You will learn four probability distributions commonly used in the analysis of data. You will analyze data sets using the appropriate probability distribution.
-
Course by
-
Self Paced
-
18 hours
-
English

Generalized Linear Models and Nonparametric Regression
In the final course of the statistical modeling for data science program, learners will study a broad set of more advanced statistical modeling tools. Such tools will include generalized linear models (GLMs), which will provide an introduction to classification (through logistic regression); nonparametric modeling, including kernel estimators, smoothing splines; and semi-parametric generalized additive models (GAMs). Emphasis will be placed on a firm conceptual understanding of these tools.
-
Course by
-
Self Paced
-
42 hours
-
English

Effective Communication Capstone Project
In the Effective Communication Capstone learners apply the lessons of Business Writing, Graphic Design, and Successful Presentation to create a portfolio of work that represents their mastery of writing, design, and speaking and that expresses their personal brand. The portfolio includes three individual elements—a written memo, a slide deck, and a presentation—integrated around a single topic. We provide the elements for a basic capstone, but we also invite our learners to create their own project if they so choose.
-
Course by
-
Self Paced
-
14 hours
-
English

The Data Driven Manager
In the Data Driven Manager specialization, you will learn how to first understand the type of data that you have (or want to generate), then describe it with numbers and graphs to communicate with your audience. You will practice using probability and distributions to understand the underlying nature of your data to make decisions and solve problems in a way that increases the likelihood of a desired outcome. You will learn the steps to create a plan to answer business and engineering questions and reduce risk when making decisions.
-
Course by
-
Self Paced
-
English

Data Science Methods for Quality Improvement
Data analysis skills are widely sought by employers, both nationally and internationally. This specialization is ideal for anyone interested in data analysis for improving quality and processes in business and industry. The skills taught in this specialization have been used extensively to improve business performance, quality, and reliability. By completing this specialization, you will improve your ability to analyze data and interpret results as well as gain new skills, such as using RStudio and RMarkdown.
-
Course by
-
Self Paced
-
English

Modern Regression Analysis in R
This course will provide a set of foundational statistical modeling tools for data science. In particular, students will be introduced to methods, theory, and applications of linear statistical models, covering the topics of parameter estimation, residual diagnostics, goodness of fit, and various strategies for variable selection and model comparison.
-
Course by
-
Self Paced
-
45 hours
-
English

A-level Mathematics for Year 12 - Course 1: Algebraic Methods, Graphs and Applied Mathematics Methods
Develop your thinking skills, fluency and confidence to aim for an A* in A-levelmaths and prepare for undergraduate STEM degrees.
-
Course by
-
Self Paced
-
12
-
English

Data Science Foundations: Statistical Inference
This program is designed to provide the learner with a solid foundation in probability theory to prepare for the broader study of statistics. It will also introduce the learner to the fundamentals of statistics and statistical theory and will equip the learner with the skills required to perform fundamental statistical analysis of a data set in the R programming language. This specialization can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform.
-
Course by
-
Self Paced
-
English

Text Marketing Analytics
Marketing data are complex and have dimensions that make analysis difficult. Large unstructured datasets are often too big to extract qualitative insights. Marketing datasets also are relational and connected. This specialization tackles advanced advertising and marketing analytics through three advanced methods aimed at solving these problems: text classification, text topic modeling, and semantic network analysis. Each key area involves a deep dive into the leading computer science methods aimed at solving these methods using Python.
-
Course by
-
Self Paced
-
English

Data Mining Foundations and Practice
The Data Mining specialization is intended for data science professionals and domain experts who want to learn the fundamental concepts and core techniques for discovering patterns in large-scale data sets.
-
Course by
-
Self Paced
-
English

Statistical Modeling for Data Science Applications
Statistical modeling lies at the heart of data science. Well crafted statistical models allow data scientists to draw conclusions about the world from the limited information present in their data. In this three credit sequence, learners will add some intermediate and advanced statistical modeling techniques to their data science toolkit. In particular, learners will become proficient in the theory and application of linear regression analysis; ANOVA and experimental design; and generalized linear and additive models.
-
Course by
-
Self Paced
-
English

Statistical Learning for Data Science
Statistical Learning is a crucial specialization for those pursuing a career in data science or seeking to enhance their expertise in the field. This program builds upon your foundational knowledge of statistics and equips you with advanced techniques for model selection, including regression, classification, trees, SVM, unsupervised learning, splines, and resampling methods. Additionally, you will gain an in-depth understanding of coefficient estimation and interpretation, which will be valuable in explaining and justifying your models to clients and companies.
-
Course by
-
Self Paced
-
English

Unsupervised Text Classification for Marketing Analytics
Marketing data is often so big that humans cannot read or analyze a representative sample of it to understand what insights might lie within. In this course, learners use unsupervised deep learning to train algorithms to extract topics and insights from text data. Learners walk through a conceptual overview of unsupervised machine learning and dive into real-world datasets through instructor-led tutorials in Python. The course concludes with a major project. This course uses Jupyter Notebooks and the coding environment Google Colab, a browser-based Jupyter notebook environment.
-
Course by
-
Self Paced
-
13 hours
-
English

Network Analysis for Marketing Analytics
Network analysis is a long-standing methodology used to understand the relationships between words and actors in the broader networks in which they exist. This course covers network analysis as it pertains to marketing data, specifically text datasets and social networks. Learners walk through a conceptual overview of network analysis and dive into real-world datasets through instructor-led tutorials in Python.
-
Course by
-
Self Paced
-
10 hours
-
English

Relational Database Design
Have you ever wanted to build a database but don't know where to start? This course will provide you a step-by-step guidance. We are going to start from a raw idea to an implementable relational database. Getting on the path, practicing the real-life mini cases, you will be confident and comfortable with Relational Database Design. Let's get started! Relational Database Design can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform.
-
Course by
-
Self Paced
-
71 hours
-
English

Data Science as a Field
This course provides a general introduction to the field of Data Science. It has been designed for aspiring data scientists, content experts who work with data scientists, or anyone interested in learning about what Data Science is and what it’s used for. Weekly topics include an overview of the skills needed to be a data scientist; the process and pitfalls involved in data science; and the practice of data science in the professional and academic world.
-
Course by
-
Self Paced
-
11 hours
-
English

Statistical Inference for Estimation in Data Science
This course introduces statistical inference, sampling distributions, and confidence intervals. Students will learn how to define and construct good estimators, method of moments estimation, maximum likelihood estimation, and methods of constructing confidence intervals that will extend to more general settings. This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform.
-
Course by
-
Self Paced
-
28 hours
-
English

Probability Theory: Foundation for Data Science
Understand the foundations of probability and its relationship to statistics and data science. We’ll learn what it means to calculate a probability, independent and dependent outcomes, and conditional events. We’ll study discrete and continuous random variables and see how this fits with data collection. We’ll end the course with Gaussian (normal) random variables and the Central Limit Theorem and understand its fundamental importance for all of statistics and data science. This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science
-
Course by
-
Self Paced
-
48 hours
-
English