

Our Courses

Meta Back-End Developer
Ready to gain new skills and the tools developers use to create websites and web applications? This certificate, designed by the software engineering experts at Meta—the creators of Facebook and Instagram, will prepare you for an entry-level career as a back-end developer. In this program, you’ll learn: Python Syntax—the most popular choice for machine learning, data science and artificial intelligence. In-demand programming skills and how to confidently use code to solve problems. Linux commands and Git repositories to implement version control.
-
Course by
-
Self Paced
-
English

Data Analysis and Interpretation
Learn SAS or Python programming, expand your knowledge of analytical methods and applications, and conduct original research to inform complex decisions. The Data Analysis and Interpretation Specialization takes you from data novice to data expert in just four project-based courses. You will apply basic data science tools, including data management and visualization, modeling, and machine learning using your choice of either SAS or Python, including pandas and Scikit-learn. Throughout the Specialization, you will analyze a research question of your choice and summarize your insights.
-
Course by
-
Self Paced
-
English

Deep Learning
An introduction to the field of deep learning, including neural networks, convolutional neural networks, recurrent neural networks, transformers, generative models, neural network compression and transfer learning. This course will benefit students’ careers as a machine learning engineer or data scientist.
-
Course by
-
Self Paced
-
English

Data Science at Scale
Learn scalable data management, evaluate big data technologies, and design effective visualizations. This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data.
-
Course by
-
Self Paced
-
English

Matrix Methods
Mathematical Matrix Methods lie at the root of most methods of machine learning and data analysis of tabular data. Learn the basics of Matrix Methods, including matrix-matrix multiplication, solving linear equations, orthogonality, and best least squares approximation. Discover the Singular Value Decomposition that plays a fundamental role in dimensionality reduction, Principal Component Analysis, and noise reduction. Optional examples using Python are used to illustrate the concepts and allow the learner to experiment with the algorithms.
-
Course by
-
Self Paced
-
7 hours
-
English

Mind and Machine
This specialization examines the ways in which our current understanding of human thinking is both illuminated and challenged by the evolving techniques and ideas of artificial intelligence and computer science. Our collective understanding of “minds” – both biological and computational – has been revolutionized over the past half-century by themes originating in fields like cognitive psychology, machine learning, neuroscience, evolutionary psychology, and game theory, among others.
-
Course by
-
English

Building a Large-Scale, Automated Forecasting System
In this course you learn to develop and maintain a large-scale forecasting project using SAS Visual Forecasting tools. Emphasis is initially on selecting appropriate methods for data creation and variable transformations, model generation, and model selection.
-
Course by
-
Self Paced
-
10 hours
-
English

Natural Language Processing
Natural Language Processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence that uses algorithms to interpret and manipulate human language. This technology is one of the most broadly applied areas of machine learning and is critical in effectively analyzing massive quantities of unstructured, text-heavy data.
-
Course by
-
Self Paced
-
English

ESG Investing: Financial Decisions in Flux
As ESG investing continues to evolve towards a global standard, certain initiatives such as the UN’s sustainable development goals, and the Paris Agreement on climate change, have already spurred significant changes across the financial markets. As the title of this specialization suggests, financial decisions by investors, as well as capital deployment by companies, organizations, and governments, have been shifting amid increasing attention to environmental, social, and governance-related concerns. By the end of this specialization, students with basic knowledge of traditional financial pr
-
Course by
-
Self Paced
-
English

Practical Data Science on the AWS Cloud
Development environments might not have the exact requirements as production environments. Moving data science and machine learning projects from idea to production requires state-of-the-art skills. You need to architect…
-
Course by
-
Self Paced
-
English

Ethics of Technology
This course explores the ethical implications of data analytics. It connects old ideas – privacy, surveillance, power, justice, accountability, corporate responsibility, stakeholder theory – with new technologies and cases, such as the use of machine learning to predict crime. The course will prepare you to evaluate strategic arguments about the ethics of data analytics and to relate data analytics to ethical concepts so that you approach newer, ambiguous capabilities of technology and artificial intelligence with a critical eye.
-
Course by
-
Self Paced
-
16 hours
-
English

Python Data Products for Predictive Analytics
Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy.
-
Course by
-
Self Paced
-
English

Cloud Machine Learning Engineering and MLOps
Welcome to the fourth course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will build upon the Cloud computing and data engineering concepts introduced in the first three courses to apply Machine Learning Engineering to real-world projects. First, you will develop Machine Learning Engineering applications and use software development best practices to create Machine Learning Engineering applications. Then, you will learn to use AutoML to solve problems more efficiently than traditional machine learning approaches alone.
-
Course by
-
12 hours
-
English

Interpretable Machine Learning Applications: Part 1
In this 1-hour long project-based course, you will learn how to create interpretable machine learning applications on the example of two classification regression models, decision tree and random forestc classifiers. You will also learn how to explain such prediction models by extracting the most important features and their values, which mostly impact these prediction models. In this sense, the project will boost your career as Machine Learning (ML) developer and modeler in that you will be able to get a deeper insight into the behaviour of your ML model.
-
Course by
-
3 hours
-
English

Create Machine Learning Models in Microsoft Azure
Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models. This course is designed to prepare you for roles that include planning and creating a suitable working environment for data science workloads on Azure.
-
Course by
-
Self Paced
-
13 hours
-
English

Interpretable Machine Learning Applications: Part 4
In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a.
-
Course by
-
Self Paced
-
3 hours
-
English

AI for Medicine
AI is transforming the practice of medicine. It’s helping doctors diagnose patients more accurately, make predictions about patients’ future health, and recommend better treatments. This three-course Specialization will give you practical experience in applying machine learning to concrete problems in medicine. These courses go beyond the foundations of deep learning to teach you the nuances in applying AI to medical use cases. If you are new to deep learning or want to get a deeper foundation of how neural networks work, we recommend taking the Deep Learning Specialization.
-
Course by
-
Self Paced
-
English

Data Science for Investment Professionals
This Specialization is uniquely tailored to the needs of investment professionals or those with investment industry knowledge who want to develop a basic, practical understanding of machine learning techniques and how th…
-
Course by
-
Self Paced
-
English

Digital Transformation Using AI/ML with Google Cloud
This series of courses begins by introducing fundamental Google Cloud concepts to lay the foundation for how businesses use data, machine learning (ML), and artificial intelligence (AI) to transform their business models. The specialization is intended for anyone interested in how the use of AI and ML for the cloud, and especially for data, creates opportunities and requires change for businesses. No previous experience with ML, programming, or cloud technologies is required. The courses do not include any hands-on technical training.
-
Course by
-
Self Paced
-
English

Machine Learning and Reinforcement Learning in Finance
The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3
-
Course by
-
Self Paced
-
English

Applied Data Science with Python
The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language.
-
Course by
-
Self Paced
-
English

Investment Management with Python and Machine Learning
The Data Science and Machine Learning for Asset Management Specialization has been designed to deliver a broad and comprehensive introduction to modern methods in Investment Management, with a particular emphasis on the use of data science and machine learning techniques to improve investment decisions.By the end of this specialization, you will have acquired the tools required for making sound investment decisions, with an emphasis not only on the foundational theory and underlying concepts, but also on practical applications and implementation.
-
Course by
-
Self Paced
-
English

AI Product Management
Organizations in every industry are accelerating their use of artificial intelligence and machine learning to create innovative new products and systems. This requires professionals across a range of functions, not just strictly within the data science and data engineering teams, to understand when and how AI can be applied, to speak the language of data and analytics, and to be capable of working in cross-functional teams on machine learning projects. This Specialization provides a foundational understanding of how machine learning works and when and how it can be applied to solve problems.
-
Course by
-
Self Paced
-
English

Unsupervised Text Classification for Marketing Analytics
Marketing data is often so big that humans cannot read or analyze a representative sample of it to understand what insights might lie within. In this course, learners use unsupervised deep learning to train algorithms to extract topics and insights from text data. Learners walk through a conceptual overview of unsupervised machine learning and dive into real-world datasets through instructor-led tutorials in Python. The course concludes with a major project. This course uses Jupyter Notebooks and the coding environment Google Colab, a browser-based Jupyter notebook environment.
-
Course by
-
Self Paced
-
13 hours
-
English

TensorFlow 2 for Deep Learning
This Specialization is intended for machine learning researchers and practitioners who are seeking to develop practical skills in the popular deep learning framework TensorFlow. The first course of this Specialization will guide you through the fundamental concepts required to successfully build, train, evaluate and make predictions from deep learning models, validating your models and including regularisation, implementing callbacks, and saving and loading models. The second course will deepen your knowledge and skills with TensorFlow, in order to develop fully customised deep learning mode
-
Course by
-
Self Paced
-
English