

Our Courses

Machine Learning Foundations for Product Managers
In this first course of the AI Product Management Specialization offered by Duke University's Pratt School of Engineering, you will build a foundational understanding of what machine learning is, how it works and when and why it is applied. To successfully manage an AI team or product and work collaboratively with data scientists, software engineers, and customers you need to understand the basics of machine learning technology.
-
Course by
-
Self Paced
-
16 hours
-
English

Introduction to Image Generation - Português Brasileiro
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
-
Course by
-
Self Paced
-
English

Accounting Data Analytics with Python
This course focuses on developing Python skills for assembling business data. It will cover some of the same material from Introduction to Accounting Data Analytics and Visualization, but in a more general purpose programming environment (Jupyter Notebook for Python), rather than in Excel and the Visual Basic Editor.
-
Course by
-
Self Paced
-
43 hours
-
English

Introduction to Data Science and scikit-learn in Python
This course will teach you how to leverage the power of Python and artificial intelligence to create and test hypothesis. We'll start for the ground up, learning some basic Python for data science before diving into some of its richer applications to test our created hypothesis. We'll learn some of the most important libraries for exploratory data analysis (EDA) and machine learning such as Numpy, Pandas, and Sci-kit learn.
-
Course by
-
Self Paced
-
14 hours
-
English

Foundations of Data Science
This is the first of seven courses in the Google Advanced Data Analytics Certificate, which will help develop the skills needed to apply for more advanced data professional roles, such as an entry-level data scientist or advanced-level data analyst. Data professionals analyze data to help businesses make better decisions. To do this, they use powerful techniques like data storytelling, statistics, and machine learning. In this course, you’ll begin your learning journey by exploring the role of data professionals in the workplace.
-
Course by
-
Self Paced
-
23 hours
-
English

Statistics for Machine Learning for Investment Professionals
One of the biggest changes in the past decade is the rapid adoption of machine learning, AI, and big data in investment decision making. This course introduces learners with knowledge of the investment industry to foundational statistical concepts underpinning machine learning as well as advanced AI techniques. This course demonstrates core modeling frameworks along with carefully selected real-world investment practice examples. The course seeks to familiarize learners with two important programming languages — Python and R (no prior knowledge of Python or R necessary).
-
Course by
-
Self Paced
-
18 hours
-
English

Naive Bayes 101: Resume Selection with Machine Learning
In this project, we will build a Naïve Bayes Classifier to predict whether a given resume text is flagged or not. Our training data consist of 125 resumes with 33 flagged resumes and 92 non flagged resumes. This project could be practically used to screen resumes in companies.
-
Course by
-
Self Paced
-
3 hours
-
English

Hands-on Machine Learning with AWS and NVIDIA
Machine learning (ML) projects can be complex, tedious, and time consuming. AWS and NVIDIA solve this challenge with fast, effective, and easy-to-use capabilities for your ML project.
-
Course by
-
Self Paced
-
23 hours
-
English

Ethical Issues in Data Science
Computing applications involving large amounts of data – the domain of data science – impact the lives of most people in the U.S. and the world. These impacts include recommendations made to us by internet-based systems, information that is available about us online, techniques that are used for security and surveillance, data that is used in health care, and many more.
-
Course by
-
Self Paced
-
24 hours
-
English

Introduction to Digital health
This course introduces the field of digital health and the key concepts and definitions in this emerging field. The key topics include Learning Health Systems and Electronic Health Records and various types of digital health technologies to include mobile applications, wearable technologies, health information systems, telehealth, telemedicine, machine learning, artificial intelligence and big data.
-
Course by
-
Self Paced
-
31 hours
-
English

Data Analytics in Accounting Capstone
This capstone is the last course in the Data Analytics in Accountancy Specialization. In this capstone course, you are going to take the knowledge and skills you have acquired from the previous courses and apply them to a real-world problem.
-
Course by
-
Self Paced
-
19 hours
-
English

Modeling Data in the Tidyverse
Developing insights about your organization, business, or research project depends on effective modeling and analysis of the data you collect. Building effective models requires understanding the different types of questions you can ask and how to map those questions to your data. Different modeling approaches can be chosen to detect interesting patterns in the data and identify hidden relationships. This course covers the types of questions you can ask of data and the various modeling approaches that you can apply.
-
Course by
-
Self Paced
-
21 hours
-
English

Linear Regression with Python
In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning.
-
Course by
-
Self Paced
-
2 hours
-
English

Deploy a predictive machine learning model using IBM Cloud
In this 1-hour long project-based course, you will be able to create, evaluate and save a machine learning model (without writing a single line of code) using Watson Studio on IBM Cloud Platform, and you will make deployment of the model and try out as a web service frontend to make predictions.
-
Course by
-
Self Paced
-
2 hours
-
English

Build Decision Trees, SVMs, and Artificial Neural Networks
There are numerous types of machine learning algorithms, each of which has certain characteristics that might make it more or less suitable for solving a particular problem. Decision trees and support-vector machines (SVMs) are two examples of algorithms that can both solve regression and classification problems, but which have different applications. Likewise, a more advanced approach to machine learning, called deep learning, uses artificial neural networks (ANNs) to solve these types of problems and more.
-
Course by
-
Self Paced
-
22 hours
-
English

Hands-on with AWS for IT Professionals
This course gets hands-on by teaching how to create a new AWS Account, create an Administrative User, and explore the AWS Free Tier. Students can then follow demonstration and explainer videos containing on how AWS Services can combine to create solutions that can be useful in real-life scenarios. The scenarios are grouped into three major categories: Data, Operations, and Architecture. In the data scenario, the instructors will show how a Machine Learning solution automatically redacts PII (Personal Identifiable Information) when data gets retrieved from an Amazon S3 bucket.
-
Course by
-
Self Paced
-
2 hours
-
English

Machine Learning Capstone
This Machine Learning Capstone course uses various Python-based machine learning libraries, such as Pandas, sci-kit-learn, and Tensorflow/Keras. You will also learn to apply your machine-learning skills and demonstrate your proficiency in them. Before taking this course, you must complete all the previous courses in the IBM Machine Learning Professional Certificate. In this course, you will also learn to build a course recommender system, analyze course-related datasets, calculate cosine similarity, and create a similarity matrix.
-
Course by
-
Self Paced
-
19 hours
-
English

Supervised Text Classification for Marketing Analytics
Marketing data often requires categorization or labeling. In today’s age, marketing data can also be very big, or larger than what humans can reasonably tackle. In this course, students learn how to use supervised deep learning to train algorithms to tackle text classification tasks. Students walk through a conceptual overview of supervised machine learning and dive into real-world datasets through instructor-led tutorials in Python.
-
Course by
-
Self Paced
-
12 hours
-
English

Advanced Data Science Capstone
This project completer has proven a deep understanding on massive parallel data processing, data exploration and visualization, advanced machine learning and deep learning and how to apply his knowledge in a real-world practical use case where he justifies architectural decisions, proves understanding the characteristics of different algorithms, frameworks and technologies and how they impact model performance and scalability.
-
Course by
-
9 hours
-
English

مطوّر الواجهة الخلفية من Meta
Ready to gain new skills and the tools developers use to create websites and web applications?
-
Course by
-
Self Paced
-
Arabic

Application using Amazon Rekognition
في اخر الكورس هتقدر تستخدم AWS Rekognition من الWesbite بتاع AWS . خلال المشروع هتقدر تستخدم AWS Rekognition APIs في Python code وهتقدر تعمل مشاريع Computer Vision, من غير ما تدخل في تفاصيل بناء Machine Learning Model,هتقدر كمان تستخدم AWS High Level Services وتخليها تعمل الوظيفة المطلوبة بسرعة ودقة \nالمشروع ده لاي شخص مبتدأ حابب يعمل مشروع او حلول بال Computer Vision باستخدام AWS سواء في دراسته او شغله لتسهيل عملية بناء Machine Learning Model.
-
Course by
-
Self Paced
-
3 hours
-
Arabic

توقع حضور المواعيد الطبية باستخدام Python
في نهاية المشروع ده هتقدر تصمم model ذكاء صناعي عشان يتوقع المريض هيجي المعاد إلي كان محدد ولا لاباستخدام Python و Jupyter Notebook. خلال المشروع هنمشى مع بعض خطوة بخطوة عشان نقدر نحلل البيانات إلي هتكون معنا من website Kaggle.com الdata دي هتكون عن مرضى في البرازيل.و هنقدر نحدد ازاي الmachine learning engineer بيختار الmachine learning model بتاعو. و ازاي إقدر إستعمل ال-machine learning model بتاعي ده عشان اتوقع هل المريض ده هيجي ولا لا. المشروع ده هيفيد الناس المهتمة بمجال الdata science.
-
Course by
-
Self Paced
-
2 hours
-
Arabic

MongoDB Aggregation Framework
This course will teach you how to perform data analysis using MongoDB's powerful Aggregation Framework. You'll begin this course by building a foundation of essential aggregation knowledge. By understanding these features of the Aggregation Framework you will learn how to ask complex questions of your data.
-
Course by
-
Self Paced
-
19 hours
-
English

Encoder-Decoder Architecture
This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.
-
Course by
-
Self Paced
-
1 hour
-
English

Attention Mechanism - Italiano
Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.
-
Course by
-
Self Paced
-
1 hour
-
English