

Our Courses
Python Data Products for Predictive Analytics
Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy.
-
Course by
-
Self Paced
-
English
Practical Data Science on the AWS Cloud
Development environments might not have the exact requirements as production environments. Moving data science and machine learning projects from idea to production requires state-of-the-art skills. You need to architect…
-
Course by
-
Self Paced
-
English
Building a Large-Scale, Automated Forecasting System
In this course you learn to develop and maintain a large-scale forecasting project using SAS Visual Forecasting tools. Emphasis is initially on selecting appropriate methods for data creation and variable transformations, model generation, and model selection.
-
Course by
-
Self Paced
-
10 hours
-
English
Introduction to Image Generation - Français
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images.
-
Course by
-
Self Paced
-
English
MATLAB Programming for Engineers and Scientists
This Specialization is designed for learners with little to no programming experience and teaches them to create MATLAB programs that solve real-world engineering and scientific problems. While the focus is on general computer programming principles, the courses also provide in-depth coverage of MATLAB's unique features for engineering and scientific computing. The first course covers basic programming concepts. The second course teaches techniques for using ChatGPT to program more productively.
-
Course by
-
Self Paced
-
English
Interpretable Machine Learning Applications: Part 4
In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a.
-
Course by
-
Self Paced
-
3 hours
-
English
Create Machine Learning Models in Microsoft Azure
Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models. This course is designed to prepare you for roles that include planning and creating a suitable working environment for data science workloads on Azure.
-
Course by
-
Self Paced
-
13 hours
-
English
Cloud Machine Learning Engineering and MLOps
Welcome to the fourth course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will build upon the Cloud computing and data engineering concepts introduced in the first three courses to apply Machine Learning Engineering to real-world projects. First, you will develop Machine Learning Engineering applications and use software development best practices to create Machine Learning Engineering applications. Then, you will learn to use AutoML to solve problems more efficiently than traditional machine learning approaches alone.
-
Course by
-
12 hours
-
English
Data Science for Investment Professionals
This Specialization is uniquely tailored to the needs of investment professionals or those with investment industry knowledge who want to develop a basic, practical understanding of machine learning techniques and how th…
-
Course by
-
Self Paced
-
English
Investment Management with Python and Machine Learning
The Data Science and Machine Learning for Asset Management Specialization has been designed to deliver a broad and comprehensive introduction to modern methods in Investment Management, with a particular emphasis on the use of data science and machine learning techniques to improve investment decisions.By the end of this specialization, you will have acquired the tools required for making sound investment decisions, with an emphasis not only on the foundational theory and underlying concepts, but also on practical applications and implementation.
-
Course by
-
Self Paced
-
English
Machine Learning and Reinforcement Learning in Finance
The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3
-
Course by
-
Self Paced
-
English
AI for Medicine
AI is transforming the practice of medicine. It’s helping doctors diagnose patients more accurately, make predictions about patients’ future health, and recommend better treatments. This three-course Specialization will give you practical experience in applying machine learning to concrete problems in medicine. These courses go beyond the foundations of deep learning to teach you the nuances in applying AI to medical use cases. If you are new to deep learning or want to get a deeper foundation of how neural networks work, we recommend taking the Deep Learning Specialization.
-
Course by
-
Self Paced
-
English
AI Product Management
Organizations in every industry are accelerating their use of artificial intelligence and machine learning to create innovative new products and systems. This requires professionals across a range of functions, not just strictly within the data science and data engineering teams, to understand when and how AI can be applied, to speak the language of data and analytics, and to be capable of working in cross-functional teams on machine learning projects. This Specialization provides a foundational understanding of how machine learning works and when and how it can be applied to solve problems.
-
Course by
-
Self Paced
-
English
Machine Learning: Theory and Hands-on Practice with Python
In the Machine Learning specialization, we will cover Supervised Learning, Unsupervised Learning, and the basics of Deep Learning. You will apply ML algorithms to real-world data, learn when to use which model and why, and improve the performance of your models. Starting with supervised learning, we will cover linear and logistic regression, KNN, Decision trees, ensembling methods such as Random Forest and Boosting, and kernel methods such as SVM. Then we turn our attention to unsupervised methods, including dimensionality reduction techniques (e.g., PCA), clustering, and recommender systems.
-
Course by
-
Self Paced
-
English
TensorFlow 2 for Deep Learning
This Specialization is intended for machine learning researchers and practitioners who are seeking to develop practical skills in the popular deep learning framework TensorFlow. The first course of this Specialization will guide you through the fundamental concepts required to successfully build, train, evaluate and make predictions from deep learning models, validating your models and including regularisation, implementing callbacks, and saving and loading models. The second course will deepen your knowledge and skills with TensorFlow, in order to develop fully customised deep learning mode
-
Course by
-
Self Paced
-
English
Machine Learning for Marketing
Understand the structure and techniques used in Machine Learning, Text Mining, and Decision Science for Marketing. Explore the fascinating world of Machine Learning and its transformative applications in marketing. Explain how analytics and decision science approaches for marketing can enhance the quality of marketing decision-making. Foundation in digital marketing analytics to understand the consumer journey, intent, and activity on your business website.
-
Course by
-
Self Paced
-
English
TensorFlow: Data and Deployment
Continue developing your skills in TensorFlow as you learn to navigate through a wide range of deployment scenarios and discover new ways to use data more effectively when training your machine learning models. In this four-course Specialization, you’ll learn how to get your machine learning models into the hands of real people on all kinds of devices. Start by understanding how to train and run machine learning models in browsers and in mobile applications.
-
Course by
-
Self Paced
-
English
Machine Learning Rock Star – the End-to-End Practice
Machine learning reinvents industries and runs the world. Harvard Business Review calls it “the most important general-purpose technology of our era.” But while there are so many how-to courses for hands-on techies, there are practically none that also serve the business leadership of machine learning – a striking omission, since success with machine learning relies on a very particular project leadership practice just as much as it relies on adept number crunching. By filling that gap, this course empowers you to generate value with ML.
-
Course by
-
English
Hands-on Foundations for Data Science and Machine Learning with Google Cloud Labs
In this Google Cloud Labs Specialization, you'll receive hands-on experience building and practicing skills in BigQuery and Cloud Data Fusion.
-
Course by
-
Self Paced
-
English
Exploratory Data Analysis in AWS
Exploratory Data Analysis in AWS is the second course in the AWS Certified Machine Learning Specialty specialization. The main focus of this course is to analyze Data Streams and Data Analytics services in AWS along with exploring Data Analysis in AWS. This course is divided into two modules and each module is further segmented by Lessons and Video Lectures. This course facilitates learners with approximately 2:00-2:30 Hours Video lectures that provide both Theory and Hands -On knowledge. Also, Graded and Ungraded Quiz are provided with every module in order to test the ability of learners.
-
Course by
-
5 hours
-
English
Explainable deep learning models for healthcare - CDSS 3
This course will introduce the concepts of interpretability and explainability in machine learning applications. The learner will understand the difference between global, local, model-agnostic and model-specific explanations. State-of-the-art explainability methods such as Permutation Feature Importance (PFI), Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanation (SHAP) are explained and applied in time-series classification.
-
Course by
-
Self Paced
-
30 hours
-
English
Business Application of Machine Learning and Artificial Intelligence in Healthcare
The future of healthcare is becoming dependent on our ability to integrate Machine Learning and Artificial Intelligence into our organizations. But it is not enough to recognize the opportunities of AI; we as leaders in the healthcare industry have to first determine the best use for these applications ensuring that we focus our investment on solving problems that impact the bottom line. Throughout these four modules we will examine the use of decision support, journey mapping, predictive analytics, and embedding Machine Learning and Artificial Intelligence into the healthcare industry.
-
Course by
-
Self Paced
-
13 hours
-
English
AI Foundations for Everyone
Artificial Intelligence (AI) is no longer science fiction. It is rapidly permeating all industries and having a profound impact on virtually every aspect of our existence. Whether you are an executive, a leader, an industry professional, a researcher, or a student - understanding AI, its impact and transformative potential for your organization and our society is of paramount importance. This specialization is designed for those with little or no background in AI, whether you have technology background or not, and does not require any programming skills.
-
Course by
-
Self Paced
-
English
Google Cloud Speech API: Qwik Start
This is a self-paced lab that takes place in the Google Cloud console. The Google Cloud Speech API integrates speech recognition into dev apps; you can now send audio/receive a text transcription. Watch these short videos Powerful Speech Recognition Using Google Machine Learning and Google Cloud Speech: Qwik Start - Qwiklabs Preview
-
Course by
-
Self Paced
-
1 hour
-
English
Building Cloud Computing Solutions at Scale
With more companies leveraging software that runs on the Cloud, there is a growing need to find and hire individuals with the skills needed to build solutions on a variety of Cloud platforms. Employers agree: Cloud talent is hard to find.
-
Course by
-
Self Paced
-
English