- Level Expert
- Ratings
- Duration 45 hours
- Course by Delft University of Technology
- Total students 11,914 enrolled
-
Offered by
About
The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.
This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.
We recommend that you complete this course prior to taking the other courses in this MicroMasters program.
What you will learn
- The principles behind the potential loss mechanisms in photovoltaic devices
- The semiconductor physics necessary to understand solar cell performance and engineering
- The optics and light management tools necessary for optimal solar cell design
- To model all aspects of a working solar cell, understanding the efficiency limits and design rules
Audit learners can develop their skills and knowledge in relation to the above learning objectives by having access to the video lectures, a limited number of practice exercises and discussion forums.
Verified learners are offered a number of study tools to demonstrate they have mastered the learning objectives. They will have access to all exercises: practice, graded and exam questions.
Skills you learn
Syllabus
Week 1: Introduction
How do solar cells convert solar energy into electrical energy? What are the basic building blocks of a solar cell?
Week 2: Semiconductor Basics
What are semiconductors? What is a band diagram?
Week 3: Generation and Recombination
What are the physics of charge carriers?
EXAM
Week 4: The P-N Junction
What is a diode? How does a diode change when we apply a voltage? What about when we illuminate it with solar energy?
Week 5: Advanced Concepts in Semiconductors
What happens when we connect a semiconductor to a metal? What other types of junctions of semiconductor materials are important for solar cells?
Week 6: Light management 1: Refraction/Dispersion/Refraction
Which optical phenomena are important for solar cells? How can we use them to make sure maximal light is absorbed.
EXAM
Week 7: Light management 2: Light Scattering
Which techniques can we use to scatter light in our solar cell to enhance optical path length?
Week 8: Electrical Losses
Pull all the concepts together to understand how to engineer solar cells.
EXAM

Arno Smets

Miro Zeman

René van Swaaij