

Our Courses
Google Advanced Data Analytics
Get professional training designed by Google and take the next step in your career with advanced data analytics skills. There are over 144,000 open jobs in advanced data analytics and the median salary for entry-level roles is $118,000.¹ Advanced data professionals are responsible for collecting, analyzing, and interpreting extremely large amounts of data.
-
Course by
-
Self Paced
-
English
Data Analysis with Python Project
The "Data Analysis Project" course empowers students to apply their knowledge and skills gained in this specialization to conduct a real-life data analysis project of their interest. Participants will explore various directions in data analysis, including supervised and unsupervised learning, regression, clustering, dimension reduction, association rules, and outlier detection. Throughout the modules, students will learn essential data analysis techniques and methodologies and embark on a journey from raw data to knowledge and intelligence.
-
Course by
-
Self Paced
-
18 hours
-
English
Deploying Machine Learning Models
In this course we will learn about Recommender Systems (which we will study for the Capstone project), and also look at deployment issues for data products. By the end of this course, you should be able to implement a working recommender system (e.g.
-
Course by
-
Self Paced
-
11 hours
-
English
Machine Learning Under the Hood: The Technical Tips, Tricks, and Pitfalls
Machine learning. Your team needs it, your boss demands it, and your career loves it. After all, LinkedIn places it as one of the top few "Skills Companies Need Most" and as the very top emerging job in the U.S. If you want to participate in the deployment of machine learning (aka predictive analytics), you've got to learn how it works. Even if you work as a business leader rather than a hands-on practitioner – even if you won't crunch the numbers yourself – you need to grasp the underlying mechanics in order to help navigate the overall project.
-
Course by
-
Self Paced
-
17 hours
-
English
Introduction to Predictive Modeling
Welcome to Introduction to Predictive Modeling, the first course in the University of Minnesota’s Analytics for Decision Making specialization. This course will introduce to you the concepts, processes, and applications of predictive modeling, with a focus on linear regression and time series forecasting models and their practical use in Microsoft Excel.
-
Course by
-
Self Paced
-
12 hours
-
English
Strategies for winning. Meteorology in a round the world regatta
In this course you can learn about the mechanics of global weather, the foundations of ocean meteorology, predictive modeling and how sailors receive data via satellite and use high-performance navigation software. This course looks at oceanic meteorology and climatology through the lens of the sport of sailing. You will gain a basic knowledge of meteorology needed by sailors to take part in a regatta such as the Barcelona World Race, the only double-handed, round the world regatta with no stops. You will learn about the strategies employed during a round the world regatta and how these are
-
Course by
-
Self Paced
-
20 hours
-
English
Predictive Modeling with Logistic Regression using SAS
This course covers predictive modeling using SAS/STAT software with emphasis on the LOGISTIC procedure. This course also discusses selecting variables and interactions, recoding categorical variables based on the smooth weight of evidence, assessing models, treating missing values, and using efficiency techniques for massive data sets. You learn to use logistic regression to model an individual's behavior as a function of known inputs, create effect plots and odds ratio plots, handle missing data values, and tackle multicollinearity in your predictors.
-
Course by
-
Self Paced
-
17 hours
-
English
Build and deploy a stroke prediction model using R
In this project, you’ll help a leading healthcare organization build a model to predict the likelihood of a patient suffering a stroke. The model could help improve a patient’s outcomes.
-
Course by
-
Self Paced
-
3 hours
-
English
Predictive Modeling, Model Fitting, and Regression Analysis
Welcome to Predictive Modeling, Model Fitting, and Regression Analysis. In this course, we will explore different approaches in predictive modeling, and discuss how a model can be either supervised or unsupervised. We will review how a model can be fitted, trained and scored to apply to both historical and future data in an effort to address business objectives. Finally, this course includes a hands-on activity to develop a linear regression model.
-
Course by
-
Self Paced
-
4 hours
-
English
Applied Data Science
This action-packed Specialization is for data science enthusiasts who want to acquire practical skills for real world data problems. If you’re interested in pursuing a career in data science, and already have foundational skills or have completed the Introduction to Data Science Specialization, this program is for you! This 4-course Specialization will give you the tools you need to analyze data and make data driven business decisions leveraging computer science and statistical analysis.
-
Course by
-
Self Paced
-
English
Big Data
Drive better business decisions with an overview of how big data is organized, analyzed, and interpreted. Apply your insights to real-world problems and questions. ********* Do you need to understand big data and how it will impact your business? This Specialization is for you. You will gain an understanding of what insights big data can provide through hands-on experience with the tools and systems used by big data scientists and engineers. Previous programming experience is not required! You will be guided through the basics of using Hadoop with MapReduce, Spark, Pig and Hive.
-
Course by
-
Self Paced
-
English
IBM Data Science
Prepare for a career in the high-growth field of data science. In this program, you’ll develop the skills, tools, and portfolio to have a competitive edge in the job market as an entry-level data scientist in as little as 4 months. No prior knowledge of computer science or programming languages is required. Data science involves gathering, cleaning, organizing, and analyzing data with the goal of extracting helpful insights and predicting expected outcomes.
-
Course by
-
Self Paced
-
English
Analytics for Decision Making
The field of analytics is typically built on four pillars: Descriptive Analytics, Predictive Analytics, Causal Analytics, and Prescriptive Analytics. Descriptive analytics (e.g., visualization, BI) deal with the exploration of data for patterns, predictive analytics (e.g., data mining, time-series forecasting) identifies what can happen next, causal modeling establishes causation, and prescriptive analytics help with formulating decisions. This specialization focuses on the Prescriptive Analytics (the final pillar).
-
Course by
-
English
Sports Performance Analytics
Sports analytics has emerged as a field of research with increasing popularity propelled, in part, by the real-world success illustrated by the best-selling book and motion picture, Moneyball.
-
Course by
-
English
Applied Data Science with R
This Specialization is intended for anyone with a passion for learning who is seeking to develop the job-ready skills, tools, and portfolio to have a competitive edge in the job market as an entry-level data scientist. Through these five online courses, you will develop the skills you need to bring together often disparate and disconnected data sources and use the R programming language to transform data into insights that help you and your stakeholders make more informed decisions. By the end of this Specialization, you will be able to perform basic R programming tasks to complete the data
-
Course by
-
Self Paced
-
English
Create Machine Learning Models in Microsoft Azure
Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models. This course is designed to prepare you for roles that include planning and creating a suitable working environment for data science workloads on Azure.
-
Course by
-
Self Paced
-
13 hours
-
English
IBM Data Analytics with Excel and R
Prepare for the in-demand field of data analytics. In this program, you’ll learn high valued skills like Excel, Cognos Analytics, and R programming language to get job-ready in less than 3 months. Data analytics is a strategy-based science where data is analyzed to find trends, answer questions, shape business processes, and aid decision-making. This Professional Certificate focuses on data analysis using Microsoft Excel and R programming language.
-
Course by
-
Self Paced
-
English
Meaningful Predictive Modeling
This course will help us to evaluate and compare the models we have developed in previous courses. So far we have developed techniques for regression and classification, but how low should the error of a classifier be (for example) before we decide that the classifier is "good enough"? Or how do we decide which of two regression algorithms is better? By the end of this course you will be familiar with diagnostic techniques that allow you to evaluate and compare classifiers, as well as performance measures that can be used in different regression and classification scenarios.
-
Course by
-
Self Paced
-
9 hours
-
English
The Power of Machine Learning: Boost Business, Accumulate Clicks, Fight Fraud, and Deny Deadbeats
It's the age of machine learning. Companies are seizing upon the power of this technology to combat risk, boost sales, cut costs, block fraud, streamline manufacturing, conquer spam, toughen crime fighting, and win elections. Want to tap that potential? It's best to start with a holistic, business-oriented course on machine learning – no matter whether you’re more on the tech or the business side. After all, successfully deploying machine learning relies on savvy business leadership just as much as it relies on technical skill.
-
Course by
-
Self Paced
-
14 hours
-
English
Basic Data Processing and Visualization
This is the first course in the four-course specialization Python Data Products for Predictive Analytics, introducing the basics of reading and manipulating datasets in Python. In this course, you will learn what a data product is and go through several Python libraries to perform data retrieval, processing, and visualization. This course will introduce you to the field of data science and prepare you for the next three courses in the Specialization: Design Thinking and Predictive Analytics for Data Products, Meaningful Predictive Modeling, and Deploying Machine Learning Models.
-
Course by
-
Self Paced
-
11 hours
-
English
Data Processing and Feature Engineering with MATLAB
In this course, you will build on the skills learned in Exploratory Data Analysis with MATLAB to lay the foundation required for predictive modeling. This intermediate-level course is useful to anyone who needs to combine data from multiple sources or times and has an interest in modeling. These skills are valuable for those who have domain knowledge and some exposure to computational tools, but no programming background.
-
Course by
-
Self Paced
-
20 hours
-
English
Predictive Modeling and Analytics
Welcome to the second course in the Data Analytics for Business specialization! This course will introduce you to some of the most widely used predictive modeling techniques and their core principles. By taking this course, you will form a solid foundation of predictive analytics, which refers to tools and techniques for building statistical or machine learning models to make predictions based on data. You will learn how to carry out exploratory data analysis to gain insights and prepare data for predictive modeling, an essential skill valued in the business.
-
Course by
-
11 hours
-
English